ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
H. Schaal, W. Bernnat
Nuclear Science and Engineering | Volume 97 | Number 2 | October 1987 | Pages 161-173
Technical Paper | doi.org/10.13182/NSE87-A27462
Articles are hosted by Taylor and Francis Online.
For calculations of high-temperature gas-cooled reactors with low-enrichment fuel, it is important to know the plutonium cross sections accurately. Therefore, a calculational method was developed, by which the plutonium cross-section data of the ENDF/B-IV library can be examined. This method uses zero- and one-dimensional neutron transport calculations to collapse the basic data into one-group cross sections, which then can be compared with experimental values obtained from integral tests. For comparison the data from the critical experiment CESAR-II of the Centre d’Etudes Nucléaires, Cadarache, France, were utilized. In this experiment samples with different plutonium concentrations and different mixtures of the plutonium isotopes were oscillated inside the core at different temperatures between 20 and 360°C. The simulation of this experiment through the calculational model developed in the present study showed that the ENDF/B-IV data for plutonium are reasonable.