ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
D. J. Sherwood, C. L. Crawford, T. L. White, C. E. Duffey, T. B. Calloway
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 88-96
Technical Note | doi.org/10.13182/NSE08-A2741
Articles are hosted by Taylor and Francis Online.
Ventilation and mixing systems in the Hanford Waste Treatment and Immobilization Plant (WTP) are being designed to account for the flammable gas hydrogen that will form in process streams, just as it also does in the radioactive liquid wastes awaiting immobilization at the Hanford Tank Farms. Tank wastes forming hydrogen at the highest rates do so by reactions involving dissolved organic complexant compounds, even though hydrogen is also formed by the better known radiolysis pathway. Hydrogen generation rates (HGRs) are predicted with a correlation relating waste properties to reaction pathways involving radiolysis of water and the degradation of organic compounds. This correlation accounts only for aqueous phase reactions. An antifoam agent (AFA) will be added to waste processed in the WTP. This organic liquid mixture is immiscible in aqueous systems and will therefore form a nonaqueous phase liquid layer on the processed waste, unless some of its compounds are unstable in the hostile physical/chemical environment and break down into soluble degradation products. Dissolved organic species increase the organic source term in the WTP HGR correlation, but the correlation requires adaptation to address hydrogen formed from immiscible organic liquids. Here, we report our initial evaluation of the hydrogen formed by 60Co gamma irradiation of a waste simulant containing Dow Corning Q2-3183A AFA with an adapted WTP HGR correlation.