We have remeasured the spectra for the neutron and secondary gamma rays due to a 14-MeV neutron source by replacing liquid nitrogen, used in our earlier work, with liquid air (LA) as the transport medium. The deuterium-tritium neutron source was located at the center of the sphere (129.3-cm radius) of LA (20.7 at. % O2 remainder N2). Scintillation detectors were located at a distance from the sphere. Using time-of-flight techniques, we obtained approximate neutron energy information by measuring the time-of-arrival of neutrons at the detectors. We also measured, in a 60-ns time window before the arrival of 14-MeV neutrons, the gamma-ray spectrum that results from nonelastic neutron interactions in LA. To compare the measured spectra with code calculations, we folded the detector efficiencies and experimental parameters into the calculated output of TARTNP, the coupled neutron-photon Monte Carlo transport code of Lawrence Livermore Laboratory. The calculated spectra for gamma rays and neutrons and the calculated radiation doses show good agreement with the measurements. The results of this work provide a benchmark point on a radiation dose versus range-in-air curve obtained by the TARTNP calculations.