ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Orano completes repatriation of reprocessing waste to Germany
Orano completed the 13th and final rail shipment of vitrified high-level nuclear waste from France to Germany. The company announced that the four casks of vitrified HLW arrived at Germany’s intermediate storage facility at Philippsburg in the early evening of November 20.
H. Alan Robitaille, John S. Hewitt
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 391-400
Technical Paper | doi.org/10.13182/NSE77-A27056
Articles are hosted by Taylor and Francis Online.
The spectrum of neutrons in thermal pseudo-equilibrium with a mixture of partially hydrogenated terphenyls and high-boiling polymers, an organic material known commercially as HB40, has been measured at room temperature. The spectrum was measured in each of seven mixtures of HB40 and a thermal-neutron absorber, trimethyl borate, in various concentrations. The spectra were determined by the time-of-flight method using the University of Toronto linear electron accelerator as a pulsed source of fast neutrons. These spectra were compared with those calculated using several different bound-hydrogen approximations to the actual energy transfer kernel for the mixture. Of these approximations, the best agreement between theory and experiment occurred for a scattering kernel derived using the diphenyl and the polyethylene scattering kernels, combined according to a weighting scheme reflecting the degree of hydrogenation of the organic material.