ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. Dulla, P. Ravetto
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 475-488
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2678
Articles are hosted by Taylor and Francis Online.
The paper is devoted to the analysis of the importance of fluid-dynamics phenomena in the neutronic simulation of fluid-fuel multiplying nuclear systems. The motion of the delayed neutron precursors has important effects on both steady-state and transient situations. In this paper the role of the motion is studied by assuming that the coupled neutronic-fluid-dynamics model is simplified, introducing different velocity fields as input data for the delayed neutron precursor balance equations. Significant effects are evidenced for steady-state spatial distributions and integral parameters, such as reactivity and effective delayed neutron fractions. Full time-dependent evaluations are also performed to investigate the response in different system configurations to various transient initiator perturbations.