ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Paul S. Feigenbaum, Martin Becker, Donald R. Harris Bimal K. Malaviya, Robert C. Block, S. A. Hayashi, S. Yamamoto
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 112-117
Technical Paper | doi.org/10.13182/NSE93-A24022
Articles are hosted by Taylor and Francis Online.
Integral neutron spectrum measurements of thoria (ThO2) were performed and analyzed at the Rensselaer Polytechnic Institute Gaerttner Linac Laboratory to assess the relative accuracy of ENDF/B- V thorium cross sections. This project was performed by first measuring the neutron spectrum that emanated from an assembly of thoria and then simulating that spectrum using ENDF/B- V evaluated data and the neutron transport code DTF-IV The neutron spectrum emanating from a 0.6-m-diam assembly of powdered thoria was recorded from 3.62 keV to 14.0 MeV using a pulsed photoneutron source, intermediate- and fast-energy neutron detectors, and the time-of-flight technique. Overall, there appears to be relatively good agreement between the measured and calculated spectra. However, the calculated spectrum underpredicts the measured spectrum between 2.87 and 0.639 MeV and overpredicts the measured spectrum between 388.0 and 72.6 keV. One interpretation of the results is that in the 0.7- to 5.0-MeV energy region, the thorium evaluated cross sections for inelastic scattering are too large.