ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
W. L. Dunn, A. M. Yacout, F. O′Foghludha
Nuclear Science and Engineering | Volume 110 | Number 2 | February 1992 | Pages 134-156
Technical Papers | doi.org/10.13182/NSE92-A23883
Articles are hosted by Taylor and Francis Online.
Gamma-ray and neutron dose-equivalent buildup factors are calculated for six common shielding materials in a point-source, infinite-slab, point-detector geometry using a decomposition of the solution to the transport problem into single- and multiple-scatter components. A rigorous solution for the single-scatter component is constructed and a Monte Carlo model for the multiple-scatter component is employed. Simplified models are fit to the calculated buildup factors as functions of slab thickness and source-detector separation, and model constants are evaluated for each of several source energies. Single-scatter and total slab buildup factors are presented, both in tabular form and in graphs that also show the fitted models, for six materials. The models are demonstrated for a sample problem.