ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
M. L. Williams
Nuclear Science and Engineering | Volume 108 | Number 4 | August 1991 | Pages 355-383
Technical Paper | doi.org/10.13182/NSE90-33
Articles are hosted by Taylor and Francis Online.
A general theory is developed to describe the mechanism by which the response observed on a detector propagates throughout a system. The response is transferred between a particle source and the detector by special particles called contributons. The distribution in phase-space of the response carried by contributons defines a new quantity called the “response continuumwhich depends on solutions to the forward and adjoint Boltzmann equations. A transport equation for the response distribution is derived, and properties of the response continuum are discussed. The response concentration is described by the contributon response density and flux, which are used to locate regions containing large amounts of potential response contribution. The flow of response through space is described by streamlines of a vector field called the “response current.” This field is related to two new variables called the “response potential” and “vorticity,"respectively. Sample results are presented for “contributon dipole” configurations. A spherical harmonic expansion of the angular flux is given to describe directional characteristics of the response continuum. The “contributon slowing-down equation” is derived to describe the simultaneous transfer of response through space and energy. A new contributon Monte Carlo method to simulate response transport is discussed.