ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Dimitris Valougeorgis, Michael Williams, Edward W. Larsen
Nuclear Science and Engineering | Volume 99 | Number 2 | June 1988 | Pages 91-98
Technical Paper | doi.org/10.13182/NSE88-A23549
Articles are hosted by Taylor and Francis Online.
A study of the spectral radius for the continuous form of the source iteration, diffusion synthetic acceleration, and various PL acceleration methods (L ≥ 1) for anisotropically scattering neutron transport is carried out via a Fourier stability analysis. The purpose of the study is to determine which acceleration scheme is optimum. The problem is formulated as a matrix eigenvalue problem with, in general, N + 1 iteration eigenvalues ω where N denotes the degree of anisotropy. The P1 acceleration method is determined as the most efficient PL approach for the cases of linearly and quadratically anisotropic scattering.