ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Sasaki, E. Kim, T. Nunomiya, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, S. Ito, A. Fukumura
Nuclear Science and Engineering | Volume 141 | Number 2 | June 2002 | Pages 140-153
Technical Paper | doi.org/10.13182/NSE02-A2273
Articles are hosted by Taylor and Francis Online.
Neutron energy spectra penetrated through concrete shields were measured using three types of high-energy neutron detectors: the Self-TOF detector, an NE213 organic liquid scintillator, and Bi and C activation detectors, which have been newly developed by a group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) facility of the National Institute of Radiological Sciences, Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ions on a thick (stopping-length) copper target. The neutron spectra were obtained through an unfolding code with their response functions and compared with LAHET and MCNPX calculations combined with the LA150 cross-section library. The calculations tend to overestimate with increasing the shielding thickness compared to the experimental results. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX code, and the contribution of the room-scattered neutrons was evaluated. The neutron fluence attenuation length was obtained from the experiment for each detector and the calculation in the energy range of 20 to 800 MeV.