ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. G. Bischoff, M. L. Yeater, W. E. Moore
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 266-280
Technical Paper | doi.org/10.13182/NSE48-266
Articles are hosted by Taylor and Francis Online.
A Monte Carlo computer code, MSC, has been developed which is of general usefulness in analyzing double-differential neutron scattering measurements. This code is equivalent to a three-dimensional solution of the neutron transport equation for finite geometries. It is available for two geometrical configurations (slab geometry and tubular geometry), and is readily adapted to other geometrical configurations. Resolution effects are calculated in detail by including full time dependence in the calculation and considering individually the various factors which contribute to the experimental resolution. MSC uses statistical weights as a means to improve the convergence of the Monte Carlo method by forcing scattering collisions; the statistical estimation technique used allows every collision to contribute to every scattered energy and angular bin. Options have been developed which treat rigorously the coherent and incoherent elastic scattering from polycrystals. Scattered energy and angle are sampled at each Monte Carlo collision by means of a new method which samples alpha and beta from the scattering law. This sampling technique is exact within the framework of numerical integration and interpolation. It permits full kernel calculations, yet requires the storage of only two-dimensional arrays. The use of this code led to changes in procedure in the double-differential neutron scattering cross-section experiments at Rensselaer. Because calculated experimental corrections are strongly model dependent, the data have not been corrected for resolution and multiple scattering effects. Instead, resolution-broadened multiple-scattered theory is compared with uncorrected data. This avoids the pitfall of data “corrections” which may, in fact, be strongly model dependent and bias the final results according to the model assumed for the calculation of the correction. This use of uncorrected data enhances the practical value of the measurements as a model testing device. Use of MSC has made it possible to obtain good scattering results with relatively thick samples for several materials, notably water, polyethylene, and uranium carbide. Some examples are given of the verification of the methods used. Experience gained by the use of MSC is summarized.