ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
F. G. Bischoff, M. L. Yeater, W. E. Moore
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 266-280
Technical Paper | doi.org/10.13182/NSE48-266
Articles are hosted by Taylor and Francis Online.
A Monte Carlo computer code, MSC, has been developed which is of general usefulness in analyzing double-differential neutron scattering measurements. This code is equivalent to a three-dimensional solution of the neutron transport equation for finite geometries. It is available for two geometrical configurations (slab geometry and tubular geometry), and is readily adapted to other geometrical configurations. Resolution effects are calculated in detail by including full time dependence in the calculation and considering individually the various factors which contribute to the experimental resolution. MSC uses statistical weights as a means to improve the convergence of the Monte Carlo method by forcing scattering collisions; the statistical estimation technique used allows every collision to contribute to every scattered energy and angular bin. Options have been developed which treat rigorously the coherent and incoherent elastic scattering from polycrystals. Scattered energy and angle are sampled at each Monte Carlo collision by means of a new method which samples alpha and beta from the scattering law. This sampling technique is exact within the framework of numerical integration and interpolation. It permits full kernel calculations, yet requires the storage of only two-dimensional arrays. The use of this code led to changes in procedure in the double-differential neutron scattering cross-section experiments at Rensselaer. Because calculated experimental corrections are strongly model dependent, the data have not been corrected for resolution and multiple scattering effects. Instead, resolution-broadened multiple-scattered theory is compared with uncorrected data. This avoids the pitfall of data “corrections” which may, in fact, be strongly model dependent and bias the final results according to the model assumed for the calculation of the correction. This use of uncorrected data enhances the practical value of the measurements as a model testing device. Use of MSC has made it possible to obtain good scattering results with relatively thick samples for several materials, notably water, polyethylene, and uranium carbide. Some examples are given of the verification of the methods used. Experience gained by the use of MSC is summarized.