ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. J. Esch, M. L. Yeater, W. E. Moore, K. W. Seemann
Nuclear Science and Engineering | Volume 46 | Number 2 | November 1971 | Pages 223-235
Technical Paper | doi.org/10.13182/NSE71-A22356
Articles are hosted by Taylor and Francis Online.
The double differential neutron scattering cross section for water has been measured at temperatures of 27, 170, and 270°C, The RPI linear electron accelerator provided the pulsed neutron source for a time-of-flight analysis of neutron energy. By phasing the LINAC with a high speed chopper, incident neutron energies ranging from 0.04 to 0.632 eV were selected. Energy distributions of scattered neutrons were obtained at scattering angles of 10, 14, 25, 40, 60, 90, 120, and 150 deg. The relatively wide range of incident energies with good resolution made it possible to observe clearly the molecular energy levels. The structure was seen to broaden considerably in going from 27 to 170°C but was little changed by the further temperature increase. A model has been developed in which the water scattering system is considered as consisting of aggregates of molecules. These clusters have temperature-dependent sizes, and diffuse according to a temperature-dependent diffusion constant. The energy levels of the molecules bound in the cluster are represented by a multi-Gaussian frequency distribution which varies with temperature. The internal vibrations of the individual water molecules are represented by delta functions. A new approach has been taken in comparing this and other models with the data, involving the application of recent improvements in methods of treating resolution and multiple scattering: a Monte Carlo technique has been used to impose these conditions on the models. These comparisons, and comparisons with integral data, indicate that the new model should have advantages for reactor calculations.