ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Proposed rule for more flexible licensing under Part 53 is open for comment
The Nuclear Regulatory Commission has published a proposed rule that has been almost five years in the making: Risk-Informed, Technology-Inclusive Regulatory Framework for Advanced Reactors. The rule, which by law must take its final form before the end of 2027, would let the NRC and license applicants use technology-inclusive approaches and risk-informed, performance-based techniques to effectively license any nuclear technology. This is a departure from two licensing options with light water reactor–specific regulatory requirements that applicants can already choose.
C. L. Brown, L. E. Hansen, H. Toffer
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 358-363
Technical Paper | doi.org/10.13182/NSE69-A20014
Articles are hosted by Taylor and Francis Online.
Exponential and critical approach experiments have been performed to determine material buddings and extrapolation distances for several hexagonal lattice arrays of 2.1 wt% 235U enriched uranium tubes in light water. Tubes of two sizes were measured—2.33-in. o.d., 1.77-in. i.d.; and 1.38-in. o.d., 0.63-in. i.d. The arrays included clean lattices of uranium tubes; uranium tubes containing lithium aluminate target rods; uranium tubes with adjacent neutron absorbing columns; and two mixed lattices of 0.95 and 2.1 wt% enriched tubes—one with the 0.95 and 2.1 wt% tubes evenly distributed in the lattice, and the other with the 0.95 and 2.1 wt% tubes arranged in alternate rings. These experiments supplement data obtained in 1965 for 1.002, 1.25, and 1.95 wt% enriched uranium tubes. Critical parameters for these lattices, calculated with the HAMMER code, agree reasonably well with the measured results.