ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. A. Ciarcia, G. P. Couchell, J. J. Egan, G. H. R. Kegel, S. Q. Li, A. Mittler, D. J. Pullen, W. A. Schier, J. Q. Shao
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 428-443
Technical Paper | doi.org/10.13182/NSE85-A18359
Articles are hosted by Taylor and Francis Online.
Fast neutron inelastic scattering cross sections for levels between 700- and 1400-keV excitation energy in 232Th have been measured using the (n,n′) time-of-flight (TOF) technique. Measurements of 125-deg differential cross sections were made using neutrons with a typical energy spread of 8 to 10 keV, generated by the 7Li(p,n)7Be reaction. The incident neutron energies covered three regions: (a) 950 to 1550 keV in 50-keV intervals with the TOF spectrometer optimized to detect 200- to 600-keV scattered neutrons, (b) 1200 to 2000 keV in 100-keV intervals with the spectrometer optimized to detect 400- to 800-keV scattered neutrons, and (c) 1700 to 2100 keV in 100-keV steps with the spectrometer optimized for 800- to 1300-keV scattered neutrons. Throughout the experiment, an overall energy resolution of < 15 keV was maintained. Level cross sections were deduced from the 125-deg differential scattering cross sections and are compared with (n,n′λ) measurements and the ENDF/B-V evaluation. Angular distributions for states in the 700- to 900- keV region have been measured at 1.2, 1.5, and 2.0 MeV.