ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Rashmi C. Desai, Mark Nelkin
Nuclear Science and Engineering | Volume 24 | Number 2 | February 1966 | Pages 142-152
Technical Paper | doi.org/10.13182/NSE66-A18299
Articles are hosted by Taylor and Francis Online.
The time-dependent moments equations derived from the linearized Boltzmann equation are solved for the case of an infinite nonabsorbing medium of hard spheres. The distribution function at zero time is chosen to be Maxwellian at origin and zero elsewhere. The solutions can be applied to neutron diffusion in monatomic hydrogen and to the motion of atoms in a dilute monatomic gas. In the latter case, the solutions give the spatial moments of Van Hove's self-correlation function Gs(,t). Non-Gaussian corrections to Gs(, t) are studied. It is found that these corrections are very sensitive to the type of anisotropy of the scattering kernel. Various approximations (including synthetic kernel) of the exact kernel for a hard sphere gas are considered. The non-Gaussian corrections obtained from approximate kernels are compared with those obtained from the exact kernel. In particular, a recently published kinetic model calculation, using a separable isotropic kernel with l/v scattering cross section, overestimates the non-Gaussian corrections by a factor of almost 4.