ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Y. Danon, M. S. Moore, P. E. Koehler, P. E. Littleton, G. G. Miller, M. A. Ott, L. J. Rowton, W. A. Taylor, J. B. Wilhelmy, M. A. Yates, A. D. Carlson, R. Harper, R. Hilko
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 482-491
Technical Paper | doi.org/10.13182/NSE96-A17926
Articles are hosted by Taylor and Francis Online.
Transmutation of actinide waste into fission products could be enhanced by using resonance fission of odd-odd target materials; those of interest are 232Pa, 238Np, and 242Am. Fission cross-section measurements of two of these short-lived materials were performed at Los Alamos National Laboratory. Samples were produced by the (d,2n) reaction in the Los Alamos Ion Beam Facility followed by fast radiochemistry to separate the odd-odd target of interest. The fission cross section of the nanogram samples was measured in a high intensity pulsed neutron beam produced by 800-MeVproton spallation. Using this procedure, the fission cross sections of the 1.3-day 232Pa and 2.1-day 238Np were successfully measured in the energy range from 0.01 eV to 50 keV. The fission cross section of the relatively long-life isotope 2S6Np was also measured in the same system while the short half-life isotopes were being prepared. The results and resonance analysis are presented.