ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Candidates announced for 2025 ANS leadership positions
As the U.S. election season finally comes to an end, the annual American Nuclear Society election season is right around the corner. Seventeen candidates have been nominated for the positions of ANS vice president/president-elect, treasurer, and six positions on the board of directors (four U.S. directors, one non-U.S. director, and one student director). Ballots will be sent via email on Tuesday, March 4, 2025, and must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
G. K. Schenter, P. Vogel
Nuclear Science and Engineering | Volume 83 | Number 3 | March 1983 | Pages 393-396
Technical Note | doi.org/10.13182/NSE83-A17574
Articles are hosted by Taylor and Francis Online.
An analytic approximation of the Fermi function F(Z, E) is proposed. The formula is applicable over a wide range of atomic numbers, Z, and of electron energies, E. It is sufficiently accurate and simple to use. An example shows how to employ the approximation in analysis of the complex beta decay schemes encountered among the short-lived fission fragments.