ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Maria Pusa
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 155-167
Technical Paper | doi.org/10.13182/NSE10-81
Articles are hosted by Taylor and Francis Online.
The topic of this paper is solving the burnup equations using dedicated matrix exponential methods that are based on two different types of rational approximation near the negative real axis. The previously introduced Chebyshev Rational Approximation Method (CRAM) is now analyzed in detail for its accuracy and convergence, and correct partial fraction coefficients for approximation orders 14 and 16 are given to facilitate its implementation and improve the accuracy. As a new approach, rational approximation based on quadrature formulas derived from complex contour integrals is proposed, which forms an attractive alternative to CRAM, as its coefficients are easy to compute for any order of approximation. This gives the user the option to routinely choose between computational efficiency and accuracy all the way up to the level permitted by the available arithmetic precision. The presented results for two test cases are validated against reference solutions computed using high-precision arithmetics. The observed behavior of the methods confirms the previous conclusions of CRAM's excellent suitability for burnup calculations and establishes the quadrature-based approximation as a viable and flexible alternative that, like CRAM, has its foundation in the specific eigenvalue properties of burnup matrices.