ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Diablo Canyon completes dry storage campaign, seeks ISFSI license renewal
Holtec International announced that it has completed the campaign to transfer Diablo Canyon’s spent nuclear to dry storage ahead of its planned schedule, paving the way for the continued operation of the central California nuclear power plant.
Masatoshi Kondo et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 190-194
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8900
Articles are hosted by Taylor and Francis Online.
Molten salt LiF-BeF2 (Flibe) is one of candidates for self-cooled tritium breeder in fusion blanket system. The Ni based alloys of Hastelloy C-276 (6.28Fe, 15.67Cr, 0.42Mn, 15.83Mo, 3.34W, Ni as balance), Inconel 600(7.02Fe, 15.75Cr, Ni as balance) and Inconel 625 (4.12Fe, 21.94Cr, 9.10Mo, Ni as balance) are candidates of structural material of blanket loop components at down stream. Corrosion characteristics of these alloys were investigated by corrosion test in static Flibe at 500°C and 600°C for 1000 hours. The corrosion rates were estimated from the weight losses of specimens, and those of Hastelloy C-276, Inconel 600 and Inconel 625 in Flibe at 600°C were 3.4m/year, 2.8m/year and 1.1m/year, respectively. The mass balance between the weight losses of specimens and the increase of impurity in Flibe by the exposure was investigated, and it was found that the corrosion was mainly caused by the depletion of Cr from the alloys. The corroded surface had high Ni concentration after the Cr depletion by corrosion, and this is expected to be corrosion resistant in Flibe.