ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Yasaka et al.
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 1-8
Technical Paper | Seventh International Conference on Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST09-A6974
Articles are hosted by Taylor and Francis Online.
A direct energy converter (DEC) designed for thermal ions escaping from a fusion reactor consists of a cusp magnetic field and one-or two-stage decelerating electrodes. In this CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce DC power. A normal cusp magnetic field enables us to separate electrons and ions for low energy electrons from a test plasma source, but not for electrons with much higher energies from the tandem mirror GAMMA10. The reason for this is found that the high energy electrons do not follow the field lines due to a high potential applied to the ion collector for ion deceleration. Use of a slanted cusp field has resolved the difficulty resulting in good separation. The efficiency of energy conversion of separated ions with wide spread in energy is ~55 % for a one-stage decelerating electrode. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. The system has revealed improvement in efficiency. From the measured voltage-current characteristics, the efficiency of this two-stage collector is estimated to have a value of 65-70 % at an optimum condition.