ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. J. Chen, D. L. Yu, L. W. Yan, B. S. Yuan, X. X. He, L. Liu, Y. L. Wei, N. Zhang, X. F. He, H. Wu, Z. B. Shi, Y. Liu, Q. W. Yang
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 37-44
Technical Paper | doi.org/10.1080/15361055.2019.1629251
Articles are hosted by Taylor and Francis Online.
In order to reconstruct the plasma current density, the Current Profile Fitting (CPF) code has been successfully developed on the HL-2A tokamak. A seven-channel motional Stark effect (MSE) diagnostic based on dual photoelastic modulators is installed to measure the pitch angle of the magnetic field, which can be used as an internal magnetic field constraint for the CPF code. Recently, the MSE polarimeter was upgraded with a real-time wavelength matching system to improve the signal-to-noise ratio. The magnetic field angle (γpitch) with a temporal resolution of 10 ms can be provided. In the CPF code, the plasma current density is described as a polynomial, and the Least-Squares method is used to determine the coefficients of the polynomial. The Finite Difference method and the Strongly Implicit Procedure method are used to solve the Grad-Shafranov equation. The code operation is stable. With the improved-quality MSE data, the CPF calculation result of shot 30782 suggests that the safety factor q profile is monotonic. The minimum q value is less than 1 on-axis during sawtooth oscillations in shot 30782. And, the position of the q = 1 surface is consistent with the sawtooth inversion radius measured by electron cyclotron emission and soft X-ray diagnostics.