ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
IAEA organizes and cohosts first World Fusion Energy Group meeting
Last week's inaugural ministerial meeting of the IAEA World Fusion Energy Group (WFEG), in Rome, Italy, drew government ministers and senior officials who represented “dozens of countries” interested in fusion energy technology.
A. Nikroo, D. G. Czechowicz, K. C. Chen, M. Dicken, C. Morris, R. Andrews, A. Greenwood, E. Castillo
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 229-232
Technical Paper | Target Fabrication | doi.org/10.13182/FST45-2-229
Articles are hosted by Taylor and Francis Online.
Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D2. In this paper, we present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters ("standard GDP") using a high deposition pressure and using modified parameters ("strong GDP") of low deposition pressure that leads to more robust shells.