ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS event on 3DEXPERIENCE platform, powered by virtual twin technology
The American Nuclear Society will be presenting the online Supplier Showcase “5 Critical Approaches to Accelerate Advanced Nuclear Enterprise Success with Digital Transformation” on Thursday, December 5, from 11:00 a.m. to 12:00 p.m. (EST). The session will be hosted by Dassault Systèmes.
Registration for the program, which is open to all, is required.
A. Turner, A. Burns, B. Colling, J. Leppänen
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 315-320
Technical Paper | doi.org/10.1080/15361055.2018.1489660
Articles are hosted by Taylor and Francis Online.
Nuclear analysis supporting the design and licensing of ITER is traditionally performed using MCNP and the reference model C-Model; however, the complexity of C-Model has resulted in the geometry creation and integration process becoming increasingly time-consuming. Serpent 2 is still a beta code; however, recent enhancements mean that it could, in principle, be applied to ITER neutronics analysis. Investigations have been undertaken into the effectiveness of Serpent for ITER neutronics analysis and whether this might offer an efficient modeling environment.
An automated MCNP-to-Serpent model conversion tool was developed and successfully used to create a Serpent 2 variant of C-Model. A version of the deuterium-tritium plasma neutron source was also created. Standard reference tallies in C-Model for the blanket and vacuum vessel heating were implemented, and comparisons were made between the two transport codes assessing nuclear responses and computer requirements in the ITER model. Excellent agreement was found between the two codes when comparing neutron and photon flux and heating in the ITER blanket modules and vacuum vessel.
Comparing tally figures of merit, computer requirements for Serpent were typically three to five times that of MCNP, and memory requirements were broadly similar. While Serpent was slower than MCNP when applied to fusion neutronics, future developments may improve this, and Serpent offers clear benefits that will reduce analyst time, including support for meshed geometry, robust universe implementation that avoids geometry errors at the boundaries, and mixed geometry types. Additional work is proceeding to compare Serpent against experiment benchmarks relevant for fusion shielding problems. While further developments are needed to improve variance reduction techniques and reduce simulation times, this paper demonstrates the suitability of Serpent to some aspects of ITER analysis.