ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Simppa Äkäslompolo, Taina Kurki-Suonio, Seppo Sipilä, ASCOT Group
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 620-627
Technical Paper | doi.org/10.13182/FST15-184
Articles are hosted by Taylor and Francis Online.
Measuring fast ions, most notably fusion alphas, in ITER and future reactors remains an issue that still lacks an adequate solution. Numerical simulations are invaluable in testing the potential and limitations of various proposed diagnostics. However, the validity of the numerical tools first has to be checked against results from existing tokamaks. In this contribution, various synthetic diagnostics for fast ions (collective Thomson scattering, neutral particle analyzer, neutron camera, infrared measurements, fast ion loss detector, and activation probe) from the orbit-following Monte Carlo code ASCOT are compared to measurements from several tokamaks (ASDEX Upgrade, DIII-D, and JET). Within the limitations of the physics included in the numerical model and availability of input data from experiments, the agreement between synthetic data and measurements is found to be quite good.