ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. Albanese, M. De Magistris, R. Fresa, F. Maviglia, S. Minucci
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 741-749
Technical Paper | doi.org/10.13182/FST15-127
Articles are hosted by Taylor and Francis Online.
We consider the problem of the accurate tracing of long magnetic field lines in tokamaks, which is in general crucial for the determination of the plasma boundary as well as for the magnetic properties of the scrape-off layer. Accurate field line tracing is strictly related to basic properties of ordinary differential equation (ODE) integrators, in terms of preservation of invariant properties and local accuracy for long-term analysis. We introduce and discuss some assessment criteria and a procedure for the specific problem, using them to compare standard ODE solvers with a volume-preserving algorithm for given accuracy requirements. In particular, after the validation for an axisymmetric plasma, a three-dimensional (3-D) configuration is described by means of Clebsch potentials, which provide analytical invariants for assessing the accuracy of the numerical integration. A standard fourth-order Runge-Kutta routine at fixed step is well suited to the problem in terms of reduced computational burden, with extremely good results for accuracy and volume preservation. Then we tackle the problem of field line tracing in the determination of plasma-wall gaps for a 3-D configuration, demonstrating the effective feasibility of the plasma boundary evaluation in tokamaks by tracing field lines with standard tools.