ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
N. A. P. Kiran Kumar, K. J. Leonard, G. E. Jellison, L. L. Snead
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 771-783
Technical Paper | doi.org/10.13182/FST14-875
Articles are hosted by Taylor and Francis Online.
The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation tolerance. Alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 displacements per atom (dpa) at 458 ± 10 K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa result in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects, which increase in size with irradiation dose. The typical size of each defect was ≈8 nm in 1-dpa specimens and ≈42 nm in 4-dpa specimens. Buckling-type delamination of the interface between the substrate and first layer was typically observed in both 1- and 4-dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high-resolution-scanning–TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in the Al2O3/SiO2 mirror, although it was less evident in the HfO2/SiO2 system. The ultimate goal of this work is to provide insight into the radiation-induced failure mechanisms of these mirrors.