ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
M. S. Tillack, X. R. Wang, D. Navaei, H. H. Toudeshki, A. F. Rowcliffe, F. Najmabadi, ARIES Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 49-74
Technical Paper | doi.org/10.13182/FST14-790
Articles are hosted by Taylor and Francis Online.
ARIES-ACT1 is the latest in a series of tokamak power plant designs that capitalize on the high-temperature capabilities and attractive safety and environmental characteristics of SiC composites coupled with a self-cooled lead-lithium breeder. This combination offers both design simplicity and high performance, capable of operating at very high coolant outlet temperature in a moderately high-power-density device. Blankets are supported within a poloidally continuous He-cooled steel structural ring, which adds robustness and minimizes loads on the SiC modules. In order to withstand high local surface heat flux in the divertor (of the order of 14 MW/m2 time averaged), a helium-cooled tungsten-alloy divertor was adopted. About 25% of the total “high-grade” heat is thus removed by helium, to be combined with the blanket heat in order to feed the power cycle. In addition to the in-vessel power-producing elements of the design, this paper also summarizes the key features and analysis of the vacuum vessel and power conversion system.