ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FST publishes special issue on fusion’s early history
The July 2024 issue of Nuclear News focused on fusion. Editor-in-chief Rick Michal highlighted in his column (p. 4) Los Alamos National Laboratory’s open access special issue of the American Nuclear Society journal Fusion Science and Technology, titled The Early History of Fusion. This article provides a brief summary of the issue—and we encourage readers to explore all of the full papers.a
N. S. Klimov, V. L. Podkovyrov, A. M. Zhitlukhin, A. D. Muzichenko, D. V. Kovalenko, A. B. Putrik, I. B. Kupriyanov, R. N. Giniyatulin, A. A. Gervash, V. M. Safronov
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 118-124
Technical Paper | doi.org/10.13182/FST13-759
Articles are hosted by Taylor and Francis Online.
The beryllium (Be) plasma-facing components (PFCs) of the ITER first wall (FW) were tested in the plasma gun QSPA-Be under pulsed plasma heat loads of 0.5-ms duration relevant to those expected in ITER during transient plasma events (edge-localized modes and disruptions). The experiments were performed for different Be grades (Russian TGP-56FW and US S65-C). The measured Be melting threshold decreases from 0.5 MJm−2 down to 0.4 MJm−2 with Be initial temperature increasing in the range of 250–500 °C. Under plasma heat loads on the exposed surface below the melting point the Be PFC erosion was mainly due to melting of the plasma-facing and lateral edges of the Be tiles. Under plasma heat loads above the melting point the Be PFC erosion was mainly due to intense melt layer movement and splashing. The Be melt layer behavior at 0.5 and 1.0 MJm−2 is similar to early investigated W melt layer behavior at higher heat loads of 1.0 and 1.5 MJm−2 correspondingly. Unlike W the Be erosion rate significantly increases with initial temperature in the range of 250–500 °C. These experimental observations are supported by calculation of temperature dynamics and melt layer thickness dynamics.