ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FST publishes special issue on fusion’s early history
The July 2024 issue of Nuclear News focused on fusion. Editor-in-chief Rick Michal highlighted in his column (p. 4) Los Alamos National Laboratory’s open access special issue of the American Nuclear Society journal Fusion Science and Technology, titled The Early History of Fusion. This article provides a brief summary of the issue—and we encourage readers to explore all of the full papers.a
A. B. Putrik, N. S. Klimov, Yu. M. Gasparyan, V. A. Barsuk, V. S. Efimov, V. L. Podkovyrov, A. M. Zhitlukhin, A. D. Yaroshevskaya, D. V. Kovalenko
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 70-76
Technical Paper | doi.org/10.13182/FST13-748
Articles are hosted by Taylor and Francis Online.
Edge-localized mode (ELM) simulation experiments were held on the quasi-stationary plasma accelerator QSPA-T to study the formation of plasma-facing material (PFM) erosion products. Parameters of the deuterium plasma heat loads in QSPA-T were close to those expected during transient events in ITER. A diagnostic system for measuring the deposition rate of the erosion products with resolution time of 0.02 ms (pulse duration 0.5 ms) was designed. It allowed defining the deposition rate dependence on time and property changes of the deposited film during the pulse. The average deposition rate in QSPA-T under exposures to ultra-short D plasmas was in the range of (0.1 to 100)×1019 at·cm2·s−1, which was much higher than that for stationary processes. It has been found that deuterium concentration in the deposited W films depends on substrate temperature and deposition rate approximately in the same way as for stationary processes. As the substrate temperature and deposition rate increased, the D/W atomic ratio in the W films decreased. For describing the evolution of the D/W ratio with the substrate temperature and the tungsten deposition rate, an empirical equation proposed by De Temmerman and Doerner (J. Nucl. Mater., 2009), but with alternative parameters, has been used.