ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
IAEA works to advance women in the nuclear community
A new program called Practical Arrangement, which has been created through a collaboration of the International Atomic Energy Agency and LinkedIn, aims to bring networking and training opportunities to women in the nuclear field. The partnership will provide essential resources, including training, research, and access to LinkedIn’s global network.
Massimo Zucchetti
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1275-1287
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30312
Articles are hosted by Taylor and Francis Online.
Activation data are needed for many evaluations concerning fusion reactors and, in particular, safety and environmental impact assessments. A stepwise description of the activation analysis process is given. A neutron source description for one-dimensional neuronic models is compared with that for three-dimensional models. Concerning neutron flux calculations, the choice between one-dimensional deterministic codes and three-dimensional Monte-Carlo codes is examined, taking into account their interface with activation codes. A reliable inventory code and an updated activation library are essential to obtain good activation data: The problems in the modeling of either pulsed irradiation or operation at different flux levels are tackled. The analysis and comparison of activation calculations for two different machine concepts [the Next European Torus (NET)/International Thermonuclear Experimental Reactor (ITER) and Ignitor], are carried out, showing how pulsed irradiation affects the results in the two cases and the main differences between the two analyses. As an example of the application of inventory calculations, a classification of NET/ITER and Ignitor materials into waste categories is proposed and discussed.