ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Richard E. Siemon, W. Thomas Armstrong, Daniel C. Barnes, R. Richard Bartsch, Robert E. Chrien, James C. Cochrane, Waheed N. Hugrass, Ralph W. Kewish, Jr., Phillip L. Klingner, H. Ralph Lewis, Rulon K. Linford, Kenneth F. McKenna, Richard D. Milroy, Donald J. Rej, James L. Schwarzmeier, Charles E. Seyler, Eugene G. Sherwood, Ross L. Spencer, Michel Tuszewski
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 13-37
Technical Paper | doi.org/10.13182/FST86-A24698
Articles are hosted by Taylor and Francis Online.
The FRX-C device is a large field-reversed theta pinch experiment with linear dimensions twice those of its FRX-A and FRX-B predecessors. It is used to form field-reversed configurations (FRCs), which are high-beta, highly prolate compact toroids. The FRX-C has demonstrated an R2 scaling for particle confinement in FRCs, indicating particles are lost by diffusive processes. Particle losses were also observed to dominate the energy balance. When weak quadrupole fields were applied to stabilize the n = 2 rotational mode, FRC lifetimes >300 µs were observed. Detailed studies of the FRC equilibrium were performed using multichord and holographic interferometry. Measurements of electron temperature by Thomson scattering showed a flat profile and substantial losses through the electron channel. The loss rate of the internal poloidal flux of the FRC was observed to be anomalous and to scale less strongly with temperature than predicted from classical resistivity. Following a modification to the device, FRCs were translated from the theta-pinch coil into a direct current (dc) solenoid and metallic vacuum chamber. The translation process was observed to be in reasonable agreement with adiabatic theory. The FRCs were translated and trapped in a dc solenoid without active auxiliary coils. Trapping was aided by the inelastic reflection of FRCs off a magnetic mirror. Measurements of the radiated power from translating FRCs indicated that radiation is a small component in the power balance; thus it appears that electron thermal conduction is more important. The particle confinement of an FRC is expected to improve as s, which measures the number of local ion gyroradii between the field null and the separatrix, increases. A regime of increased susceptibility to magnetohydrodynamic modes, notably the internal tilt, however, has recently been predicted to have a threshold in s of 3 to 4. To address these issues, as well as the issues of electron energy loss and poloidal flux loss, a three-stage experiment has been proposed that is predicted to reach s of ~7. The FRX-D device will consist of separate formation, heating, and confinement regions. Plasma translation permits separation of these functions in a manner thought to be desirable for a fusion reactor.