ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
PG&E launches AI solution at Diablo Canyon
Diablo Canyon will host a commercial installation of the first on-site generative artificial intelligence deployment at a U.S. nuclear plant.
Pacific Gas & Electric is deploying Atomic Canyon’s Neutron Enterprise to assist the utility’s management of datasets associated with operations of Diablo Canyon. The software, which runs on Nvidia’s full-stack AI platform, enables intelligent document processing, computation of semantic embeddings, and generative capabilities. Its infrastructure allows nuclear facilities to process and analyze vast amounts of complex documentation with unprecedented speed and accuracy, according to the company.
T. Matsuzaki, K. Nagamine, K. Ishida, M. Kato, H. Sugai, M. Tanase, G.H. Eaton
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 993-997
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22733
Articles are hosted by Taylor and Francis Online.
An in-situ tritium-deuterium gas-purification system has been constructed to produce a high-purity D-T target gas for muon catalyzed fusion experiments at the RIKEN-RAL Muon Facility. At the experiment site, the system enables us to purify the D-T target gas by removing 3He component, to adjust the D/T gas mixing ratio and to measure the hydrogen isotope components. The system is specially designed to handle the D-T gas with a negative pressure, and the maximum tritium inventory of 56 TBq (1500 Ci) is operated. The employed combination of a palladium filter and a cryotrap has demonstrated as an efficient device to purify hydrogen gas with a negative pressure. We have completed a series of muon catalyzed d-t fusion experiments at various tritium concentrations, including an experiment with a non-equilibrium D2-T2 target condition. The muon catalyzed t-t fusion process has also been studied using the tritium gas supplied free of 3He by the system.