ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. H. Skinner, C. A. Gentile, R. Doerner
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 1-7
Technical Paper | doi.org/10.13182/FST13-A17041
Articles are hosted by Taylor and Francis Online.
Practical methods to clean ITER's diagnostic mirrors will be essential to ITER's plasma operations. We report on laser cleaning of candidate ITER single-crystal molybdenum mirrors that were plasma coated with either carbon or beryllium films 150 to 420 nm thick. A pulsed Nd laser beam was focused to 1 to 2 J/cm2 and scanned at various speeds across the surface of a mirror. The cleaning effect was measured with a novel method that combined microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at the H-alpha and H-beta wavelengths. No damage of the molybdenum mirror substrates was observed at the range of laser intensities used. For carbon-coated mirrors, complete removal of the film and restoration of the reflectivity were measured in some conditions. For the beryllium-coated mirrors, restoration of reflectivity has so far been incomplete. Heat transfer calculations suggest a shorter, [approximately]5-ns laser pulse would be optimal.