ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Argonne investigates industrial SMR applications for postwar Ukraine
Argonne National Laboratory will play a leading role in planning and rebuilding a nuclear-generated clean energy infrastructure for postwar Ukraine as part of the lab’s focus on developing small modular reactor applications to help countries meet energy security goals. The latest plans, described in a November 19 article, were announced on November 16 at COP29 in Baku, Azerbaijan.
V. Shevchenko, G. Cunningham, A. Gurchenko, E. Gusakov, B. Lloyd, M. O'Brien, A. Saveliev, A. Surkov, F. Volpe, M. Walsh
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 202-215
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1499
Articles are hosted by Taylor and Francis Online.
Burning plasma spherical tokamaks (STs) rely on off-axis current drive (CD) and nonsolenoid start-up techniques. Electron Bernstein waves (EBWs) may provide efficient off-axis heating and CD in high-density ST plasmas. EBWs may also be used in the plasma start-up phase because EBW absorption and CD efficiency remain high even in relatively cold plasmas. EBW studies on the Mega Ampere Spherical Tokamak (MAST) can be subdivided into four separate subjects: thermal electron cyclotron emission observations from overdense plasmas, EBW modeling, proof-of-principle EBW heating experiments with the existing 60-GHz gyrotrons, and EBW assisted plasma start-up at 28 GHz. These studies are also aimed at determining the potential for a high-power EBW system for heating and CD in MAST. The optimum choice of frequency and launch configuration is a key issue for future applications in MAST. This paper describes diagnostics, modeling tools, and high-power radio frequency systems developed specifically for EBW research in MAST. The experimental methodology employed in proof-of-principle EBW heating experiments along with experimental results is discussed in detail. EBW heating via the ordinary-extraordinary-Bernstein (O-X-B) mode conversion has clearly been observed for the first time in an ST.