ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
A. Litnovsky, M. Matveeva, D. L. Rudakov, C. P. Chrobak, S. L. Allen, A. W. Leonard, P. L. Taylor, C. P. C. Wong, B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz, P. C. Stangeby, U. Breuer, V. Philipps, S. Möller
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 97-103
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14119
Articles are hosted by Taylor and Francis Online.
Thermo-oxidation is controlled exposure in an oxygen-containing atmosphere at elevated temperature and is being considered as a technique for the de-tritiation of carbon-based codeposits in ITER. In addition, unplanned oxidation may also occur during accidental air ingress. The impact of thermo-oxidation on ITER diagnostic mirrors causes concerns. A dedicated study was performed in DIII-D, where molybdenum and copper mirrors were installed in the main chamber, in the divertor, and at a location remote from the plasma and exposed for [approximately]2 hours to a mixture containing 80% helium and 20% oxygen at a total pressure of 1.27 kPa. Mirrors in the main chamber and in the divertor were exposed at 350°C to 360°C whereas the temperature of mirrors in the remote area was [approximately]160°C.Reflectivity of all mirrors was degraded after thermo-oxidation showing a decrease in the UV range from 60% to 10% for molybdenum mirrors and a 90% drop for copper mirrors at the wavelength 250 nm. The reflectivity of mirrors exposed at lower temperature was less degraded. Surface analyses revealed formation of oxides on all mirrors.In ITER, shutters planned for mirror protection are ineffective against thermo-oxidation. Nevertheless, in-situ cleaning systems planned for ITER mirrors may efficiently remove oxide layers.