ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Brookhaven experiment offers new way to study nucleus structure
Recently published research done at Brookhaven National Laboratory is offering a new, high-energy method for studying the structure of atomic nuclei. Scientists have been using the Solenoidal Tracker at the Relativistic Heavy Ion Collider (RHIC), known as STAR, to track the particles produced by ion collisions in the particle accelerator. Their research was published earlier this month in Nature.
C. Thomser, V. Bailescu, S. Brezinsek, J. W. Coenen, H. Greuner, T. Hirai, J. Linke, C. P. Lungu, H. Maier, G. Matthews, Ph. Mertens, R. Neu, V. Philipps, V. Riccardo, M. Rubel, C. Ruset, A. Schmidt, I. Uytdenhouwen, Jet Efda Contributors
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 1-8
PFC and FW Materials Issues | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14103
Articles are hosted by Taylor and Francis Online.
The chosen materials for plasma facing components for the deuterium/tritium phase of ITER are beryllium and tungsten. These materials have already been widely investigated in various devices like ion beam or electron beam tests. However, the operation of this material combination in a large tokamak including plasma wall interaction, material degradation, erosion and material mixing has not been proven yet.The ITER-like Wall, which has been recently installed in JET, consists of a combination of bulk tungsten and tungsten coated CFC divertor tiles as well as bulk beryllium and beryllium coated INCONEL in the main chamber. The experiments in JET will provide the first fully representative test of the ITER material choice under relevant conditions.This paper concentrates on material research and developments for the materials of the JET ITER-like Wall with respect to mechanical and thermal properties. The impact of these materials and components on the JET operating limits with the ITER-like Wall and implications for the ongoing scientific program will be summarised.