ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
Robert Schleicher, Christina Back
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 144-149
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13411
Articles are hosted by Taylor and Francis Online.
General Atomics (GA) is developing a new nuclear concept called Energy Multiplier Module (EM2), which is a helium (He) cooled fast reactor with a net electrical output of 240 MW. It employs a “convert & burn” core design which converts fertile to fissile and burns it in situ over a 30-year core life. It can burn SNF from LWRs with no reprocessing, only refabrication. The core can be recycled using an AIROX-based method to remove a fraction of the fission products (FPs) but no heavy metals. The reactor is passively safe and sited below grade. It can sustain a Fukushima type station blackout or even a station blackout combined with a loss of coolant accident using only passive safety systems without radioactivity release or loss of plant. The afterheat is rejected directly to the air. It is a high temperature reactor and employs a direct closed-cycle gas turbine for 48% net efficiency. The reject heat can be released directly to air so that siting near a large water source is not required. GA is targeting a power cost in the range of 6-7 cents/kW-hr, which would make it a competitive power source even with low-cost natural gas. This ambitious power cost is achieved through high efficiency, simplicity of the direct cycle gas turbine power and relatively small subsystems that can be shop fabricated and shipped by road to the site.