ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Argonne investigates industrial SMR applications for postwar Ukraine
Argonne National Laboratory will play a leading role in planning and rebuilding a nuclear-generated clean energy infrastructure for postwar Ukraine as part of the lab’s focus on developing small modular reactor applications to help countries meet energy security goals. The latest plans, described in a November 19 article, were announced on November 16 at COP29 in Baku, Azerbaijan.
Shin Nishimura, Hideo Sugama, Yuji Nakamura
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 61-78
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1288
Articles are hosted by Taylor and Francis Online.
Methods to obtain monoenergetic viscosity coefficients by combining analytical approximations of the linearized drift kinetic equation are studied for a previously formulated full neoclassical transport matrix in general nonsymmetric toroidal plasmas. A unified analytical treatment of two coefficients due to the non-bounce-averaged radial drifts of guiding centers is shown. These coefficients were previously obtained by a direct numerical calculation of the kinetic equation in the three-dimensional (3-D) phase-space (pitch-angle, poloidal and toroidal angles). In a present study, the radial drift term in the equation is divided into three parts, and then the perturbed distribution and the resulting monoenergetic coefficients are expressed by superposed components, which can be calculated by combining analytical methods. An analytical expression for the boundary layer correction to the parallel viscosity in the 1/ regime also is newly derived to complete the full matrix without a numerical calculation in 3-D phase-space. Analytical results given by adding these components approximately reproduce results of the direct numerical calculation of the kinetic equation.