ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
A. Taguchi, R. Akai, M. Saito, Y. Torikai, M. Matsuyama, M. Ogura, S. Uchida
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1395-1398
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12691
Articles are hosted by Taylor and Francis Online.
The ability of various solid adsorbents to adsorb tritium from tritiated water was studied. The tritium removability and adsorption ability of mesoporous silica (MCM-41) were found to be larger than those of conventional microporous zeolites such as mordenite (MOR) and Linde-type A (LTA). The different adsorbents can be arranged in order of tritium removability and tritium adsorption ability as follows: MCM-41 > LTA(5A) > high-silica MOR [approximately equal] low-silica MOR [approximately equal] LTA(4A). The adsorbents can also be arranged in decreasing order of the separation factor () as follows: MCM-41 > LTA(5A) > low-silica MOR [approximately equal] LTA(4A) > high-silica MOR.