ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
T. Mizuuchi, F. Sano, K. Nagasaki, H. Okada, S. Kobayashi, K. Hanatani, Y. Torii, Y. Ijiri, T. Senju, K. Yaguchi, K. Sakamoto, K. Toshi, M. Shibano, K. Kondo, Y. Nakamura, M. Kaneko, H. Arimoto, G. Motojima, S. Fujikawa, H. Kitagawa, H. Nakamura, T. Tsuji, M. Uno, S. Watanabe, H. Yabutani, S. Matsuoka, M. Nosaku, N. Watanabe, S. Yamamoto, K. Y. Watanabe, Y. Suzuki, M. Yokoyama
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 352-360
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1256
Articles are hosted by Taylor and Francis Online.
In the helical-axis heliotron configuration, bumpiness of the Fourier components in Boozer coordinates is introduced to control the neoclassical transport. The bumpiness helps not only to align the mod-Bmin contours with the magnetic flux surfaces but also to control the balance of bootstrap currents due to helical and toroidal ripples. Effects of bumpiness control on the plasma performance (noninductive currents, fast-ion behavior, and global energy confinement) have been investigated in Heliotron J by selecting three configurations with different bumpiness ([curly epsilon]b = B04/B00 = 0.01, 0.06, and 0.15 at = 2/3) but almost the same edge rotational transform and plasma volume. The dependence of noninductive toroidal currents is qualitatively consistent with the neoclassical prediction for the bootstrap current. The high-bumpiness configuration seems to be preferable for the confinement of fast ions. However, the longer global energy confinement time is not observed in the highest-bumpiness configuration ([curly epsilon]b = 0.15). When the dependence of the effective ripple modulation amplitude in International Stellarator Scaling 04 scaling is examined, the experimental results show that the normalized global energy confinement time seems long in the configuration with the minimum effective ripple modulation amplitude, where [curly epsilon]b is 0.06.