ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
U.S. spent fuel liability jumps to $44.5 billion
The Department of Energy’s estimated overall liability for failing to dispose of the country’s commercial spent nuclear fuel jumped as much as 10 percent this year, from a range of $34.1 billion to $41 billion in 2023 to a range of $37.6 billion to $44.5 billion in 2024, according to a financial audit of the DOE’s Nuclear Waste Fund (NWF) for fiscal year 2024.
S. Papastergiou et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 873-876
ITER | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12557
Articles are hosted by Taylor and Francis Online.
The ITER Vacuum Pumping systems are designed to pump hydrogen isotopes, including tritium, helium and impurities. The EU is responsible for the in-kind supply of 8 torus-, 2 cryostat-, 3 Heating Neutral Beam- (HNB) and 1 Diagnostic Neutral Beam- (DNB) cryopumps, their 14 Cold Valve Boxes (CVBs) and the cryolines between them as well as the Leak Detection and Localization (LD&L) systems. The design of these systems has progressed well in the past with the exception of LD&L, where the results of a significant R&D program are required to define the design. The torus and cryostat cryopumps incorporate an inlet vacuum valve capable of controlling the pumping speed and require to be sufficiently instrumented for performance and inventory control. In order to fully define the related Procurement Arrangements (PA) and minimize any technological, programmatic or cost risks, a 1:1 Pre-Production cryopump (PPC) has been planned to be built and tested as well as a series of necessary R&D activities will need to be performed. These activities will address all technological challenges, specify the instrumentation needs of these Vacuum Pumping systems and analyze their performance, incorporating also all safety provisions and remote handling requirements.