ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Uranium prices continue downward trend
Uranium prices have fallen to their lowest level in more than a month, to just under $79 per pound, on Friday, November 1, according to analyst website Trading Economics. The lower prices, according to the site, are related to recent evidence of increased supply. This contrasts with the longer-term expectations of bullish demand and higher prices.
Wu-Sheng Shih, R. B. Stephens, W. J. James
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 24-31
Technical Paper | doi.org/10.13182/FST00-A118
Articles are hosted by Taylor and Francis Online.
Composite coatings containing beryllium are prepared by plasma-enhanced chemical vapor deposition at a substrate temperature as low as 250°C in a radio-frequency-induced cylindrical plasma reactor. Diethylberyllium is used as the precursor together with hydrogen as a coreactant gas. These coatings are characterized by Auger electron spectroscopy (AES), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, electrical resistivity, and thermogravimetric analysis. AES indicates that the composition of the coatings reaches a steady level at a depth of 300 Å from the surface and maintains a constant composition throughout the thickness of the coatings. The characterization studies establish the dominant phase to be Be2C. The coatings are also resistant to oxidation and hydrolysis in dry/moist air unlike bulk Be2C. It is found that the coatings deposited close to the diethylberyllium inlet contain amorphous beryllium that is homogeneously dispersed in a Be2C matrix. Films of ~5-m thickness with an acceptable permeability to H2 are prepared. These coatings meet some of the major requirements of the ablator material for inertial confinement fusion target capsules.