ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wu-Sheng Shih, R. B. Stephens, W. J. James
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 24-31
Technical Paper | doi.org/10.13182/FST00-A118
Articles are hosted by Taylor and Francis Online.
Composite coatings containing beryllium are prepared by plasma-enhanced chemical vapor deposition at a substrate temperature as low as 250°C in a radio-frequency-induced cylindrical plasma reactor. Diethylberyllium is used as the precursor together with hydrogen as a coreactant gas. These coatings are characterized by Auger electron spectroscopy (AES), X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, electrical resistivity, and thermogravimetric analysis. AES indicates that the composition of the coatings reaches a steady level at a depth of 300 Å from the surface and maintains a constant composition throughout the thickness of the coatings. The characterization studies establish the dominant phase to be Be2C. The coatings are also resistant to oxidation and hydrolysis in dry/moist air unlike bulk Be2C. It is found that the coatings deposited close to the diethylberyllium inlet contain amorphous beryllium that is homogeneously dispersed in a Be2C matrix. Films of ~5-m thickness with an acceptable permeability to H2 are prepared. These coatings meet some of the major requirements of the ablator material for inertial confinement fusion target capsules.