ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. Kasparek, R. Van Den Braber, N. Doelman, E. Fritz, V. Erckmann, F. Hollmann, G. Michel, F. Noke, F. Purps, W. Bongers, B. Krijger, M. Petelin, L. Lubyako, A. Bruschi, ECRH Groups at IPP Greifswald and IPF Stuttgart
Fusion Science and Technology | Volume 59 | Number 4 | May 2011 | Pages 729-741
Technical Paper | Sixteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) | doi.org/10.13182/FST11-A11738
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) systems for next-step large fusion devices operate in continuous wave power in the multimegawatt range. The unique feature of narrow and well-localized power deposition assigns a key role to ECRH for different tasks, such as plasma start-up, electron heating, current drive, magnetohydrodynamic (MHD) control and profile shaping. The integration of high-power microwave diplexers in the transmission lines will improve the flexibility and efficiency while simultaneously reducing the complexity of large ECRH systems. They can serve as power or beam combiners, as slow and fast directional switches to toggle the power from continuously operating gyrotrons between two launchers, and as discriminators of low-power electron cyclotron emission (ECE) signals from high-power ECRH using a common transmission line and antenna. Among various design options a resonant diplexer with a narrow resonance was selected for application at ASDEX Upgrade. The design is driven by the specific physics requirements for MHD control experiments and possible use for line-of-sight ECE. The compact, waveguide-compatible design features a feedback-controlled mirror drive for tracking of the resonator to the gyrotron frequency. High-power, long-pulse tests were performed with the 140-GHz ECRH system for the stellarator W7-X. Results on the transmission characteristics, power combination, and stationary and controlled distribution of the input power to two outputs are presented. The qualification for in-line ECE was investigated.