ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Shimozuma, H. Takahashi, S. Kubo, Y. Yoshimura, H. Igami, Y. Takita, S. Kobayashi, S. Ito, Y. Mizuno, H. Idei, T. Notake, M. Sato, K. Ohkubo, T. Watari, T. Mutoh, R. Minami, T. Kariya, T. Imai, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 530-538
Chapter 11. Electron Cyclotron Resonance Heating | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST58-530
Articles are hosted by Taylor and Francis Online.
The electron cyclotron resonance heating (ECRH) system on the Large Helical Device (LHD) has been in stable operation for [approximately]11 yr in numerous plasma experiments. During this time, many upgrades to the system have been made, such as reinforcement of the gyrotron tubes, modification of the power supply depending on gyrotron type, and increase in the number of transmission lines and antennas. These efforts allow the stable injection of millimeter-wave power in excess of 2 MW. In parallel, various transmission components were evaluated, and antenna performance was confirmed at a high power level. The coupling efficiency of the millimeter wave from the gyrotron to the transmission line and the transmission efficiency through the waveguide were further improved in recent years. The feedback control of the wave polarization has also been tried to maximize the efficiency of wave absorption. The gyrotron oscillation frequency was reconsidered in order to extend the flexibility of the magnetic configuration in plasma experiments. The development of 77-GHz gyrotrons with the output of 1 MW per few seconds in a single tube is currently taking place in collaboration with the University of Tsukuba. Two such gyrotron tubes already have been installed and were used for plasma experiments recently. An ECRH system with a capability of the steady operation is required, because the LHD can continuously generate confinement magnetic fields using superconducting magnets. Not only the gyrotron but also the transmission system and components must withstand continuous power operation. Further acceleration of both the power reinforcement and a steady-state capability will allow the sustainment of high-performance plasmas.