ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. Tamura, S. Inagaki, T. Tokuzawa, C. Michael, K. Tanaka, K. Ida, T. Shimozuma, S. Kubo, K. Itoh, Y. Nagayama, K. Kawahata, S. Sudo, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 122-130
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10799
Articles are hosted by Taylor and Francis Online.
The observation of a significant rise of the core electron temperature Te in response to edge cooling in a helical plasma was first made on the Large Helical Device (LHD). When the phenomenon takes place, the core electron heat flux is reduced abruptly without changing the thermodynamic values in the region of interest (core). Thus, the phenomenon observed in LHD can be equated to a "nonlocal transport phenomenon," observed so far only in tokamaks. The nonlocal transport phenomenon in LHD takes place in almost the same parametric domain (i.e., in a high-temperature and low-density regime) as in tokamaks. Meanwhile, various new aspects of the nonlocal transport phenomenon have been revealed by the LHD experiments; for example, (1) in LHD, the nonlocal transport phenomenon has been observed in net current-free plasmas sustained only by electron cyclotron heating. This experimental result can completely rule out the contribution of the toroidal plasma current as a reason for the nonlocal transport phenomenon. (2) It has been found that during the nonlocal transport phenomenon, there appears a strong correlation between core electron heat flux and edge Te gradient on a timescale shorter than the diffusion time and a spatial scale longer than the microturbulence correlation length. At that time, it was also found that an envelope of density fluctuations is modulated with a low frequency (2 kHz), which suggests the existence of a long-ranged turbulent structure in the plasma, where the nonlocal transport phenomenon can appear.