ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. Tamura, S. Inagaki, T. Tokuzawa, C. Michael, K. Tanaka, K. Ida, T. Shimozuma, S. Kubo, K. Itoh, Y. Nagayama, K. Kawahata, S. Sudo, A. Komori, LHD Experiment Group
Fusion Science and Technology | Volume 58 | Number 1 | July-August 2010 | Pages 122-130
Chapter 3. Confinement and Transport | Special Issue on Large Helical Device (LHD) | doi.org/10.13182/FST10-A10799
Articles are hosted by Taylor and Francis Online.
The observation of a significant rise of the core electron temperature Te in response to edge cooling in a helical plasma was first made on the Large Helical Device (LHD). When the phenomenon takes place, the core electron heat flux is reduced abruptly without changing the thermodynamic values in the region of interest (core). Thus, the phenomenon observed in LHD can be equated to a "nonlocal transport phenomenon," observed so far only in tokamaks. The nonlocal transport phenomenon in LHD takes place in almost the same parametric domain (i.e., in a high-temperature and low-density regime) as in tokamaks. Meanwhile, various new aspects of the nonlocal transport phenomenon have been revealed by the LHD experiments; for example, (1) in LHD, the nonlocal transport phenomenon has been observed in net current-free plasmas sustained only by electron cyclotron heating. This experimental result can completely rule out the contribution of the toroidal plasma current as a reason for the nonlocal transport phenomenon. (2) It has been found that during the nonlocal transport phenomenon, there appears a strong correlation between core electron heat flux and edge Te gradient on a timescale shorter than the diffusion time and a spatial scale longer than the microturbulence correlation length. At that time, it was also found that an envelope of density fluctuations is modulated with a low frequency (2 kHz), which suggests the existence of a long-ranged turbulent structure in the plasma, where the nonlocal transport phenomenon can appear.